Table Of Contents

Best Practices for Segmental Retaining Wall Design
The intent of this document is to communicate the best practices for design of Segmental Retaining Walls (SRW) as determined by Allan Block Corporation based on 30 plus years of research, design and field experience.
Navigate by using the arrows at the top, or jump directly to specific sections with the Table of Contents
   
Part 2 - Best Practice Considerations

Chapter 1.0 Design Guidelines and Pre-Construction Considerations
  • 1.1 Meeting with Owner
  • 1.2 Determining when Engineering is Required
  • 1.3 Existing and Proposed Utilities
  • 1.4 Wall Layout, height and geometry
  • 1.5 Geotechnical Report Considerations
  • 1.6 Understanding sites soils
  • 1.7 Site Visit
  • 1.8 Temporary Load Considerations
  • 1.9 Scope of Responsibility and Design Methodologies
  • 1.10 Minimum Design Safety Factors
  • 1.11 Coherent Gravity Mass and Connection Strength Considerations
  • 1.12 Contractor Requirements
  • 1.13 Manufactured Product Specifications
  • 1.14 Freeze Thaw Durability
  • 1.15 Pre-Construction Meeting
  • 1.16 Visiting the Site During Construction
  • 1.17 Construction Drawings
  • 1.18 For the Bidding Process
  • 1.19 Quality Control, Quality Assurance
   

Chapter 2.0 Typical Wall Construction
  • 2.1 Inspection of Materials
  • 2.2 Allowable Foundation Soils
  • 2.3 Allowable Infill Soils
  • 2.4 Wall Rock Guidelines
  • 2.5 Soil Parameter Verification
  • 2.6 Typical Wall Embedment
  • 2.7 Base Trench Requirements
  • 2.8 Base Trench Considerations
  • 2.9 Minimum Grid Lengths
  • 2.10 Initial Grid Location
  • 2.11 Maximum Grid Spacing
  • 2.12 Minimum Wall Facing Depth
  • 2.13 Capping the Wall
   

Chapter 3.0 Water Management - Typical
  • 3.1 Identifying Potential Water Sources
  • 3.2 Blanket and Chimney Drains
  • 3.3 Venting of Drain Pipes
  • 3.4 Above Grade Water Management
   

Chapter 4.0 Water Management - Alternate Drain
  • 4.1 Alternate Drain Locations
  • 4.2 Heel Drain Recommendations
   

Chapter 5.0 Water Application
  • 5.1 Below Grade Water Management
  • 5.2 Water Application Construction
   

Chapter 6.0 Soil and Compaction
  • 6.1 Understanding sites soils
  • 6.2 Allowable Foundation Soils
  • 6.3 Allowable Infill Soils
  • 6.4 Wall Rock Guidelines
  • 6.5 Soil Parameter Verification
  • 6.6 Inspection and Testing Recommendations
  • 6.7 Compaction Requirements at the Face of Wall
  • 6.8 Maximum Compaction Lift Spacing
  • 6.9 Compaction Requirements for Backfill Soil
  • 6.10 Testing Location and Frequencies
  • 6.11 Water Management During Construction
  • 6.12 Wall Step Ups in Base Course
  • 6.13 Stair Considerations
   

Chapter 7.0 Geogrid Reinforcement Requirements, Corner and Radius Design Practices
  • 7.1 Geogrid Reinforcement Requirements and Certification
  • 7.2 Proper Grid Orientation
  • 7.3 Wall Rock Design for Corners and Curved Walls
   

Chapter 8.0 Tall Walls Considerations
  • 8.1 Tall Wall Definition
  • 8.2 Variable Rock Thickness at Face
  • 8.3 Compaction and Soil Considerations
  • 8.4 Increased Forces in Lower Portion of Walls
  • 8.5 Global Stability of Tall Walls
  • 8.6 Internal Compound Stability Calculations
  • 8.7 Minimum Wall Facing Depth
   

Chapter 9.0 Global Stability - General
  • 9.1 Wall Embedment with Toe Slope
  • 9.2 When to Analyze for Global Stability
  • 9.3 Increasing Global Stability Options
  • 9.4 Effect of Groundwater on Global Stability
   

Chapter 10.0 Global Stability - Terraced
  • 10.1 Terraced Wall Considerations
  • 10.2 Upper Wall Influence - Surcharge
  • 10.3 Height and Grading
  • 10.4 Grid Considerations
  • 10.5 Compaction and Testing
  • 10.6 Toe and Heel Drain
  • 10.7 Global Stability
  • 10.8 Tall Wall Terraces
   

Chapter 11.0 Seismic Considerations
  • 11.1 Recommendations Associated with Seismic Loading
  • 11.2 Slope Above Seismically Loaded Walls
  • 11.3 Mononobe-Okabe Slope Above Limitations
  • 11.4 Alternate Design Approach – Trial Wedge Method
   

Chapter 12.0 Above Wall Considerations
  • 12.1 Minimum Grid Lengths at the Top of the Wall
  • 12.2 Fences and Railings
  • 12.3 Slopes Above the Wall
  • 12.4 Stability of Slopes Above
  • 12.5 Compaction Requirements for Slopes Above
  • 12.6 Reinforcing Slopes Above Walls
  • 12.7 Plantings
   

Allan Block Resources
Allan Block Spec Book
AB Engineering Manual
AB Commercial Manual
Seismic Testing Book
   
Search
 

Chapter 5: Water Applications

Click on the topics below to view more information on the best practices for Allan Block segmental retaining wall design for residental and commercial applications.





5.1    Below grade water management plan for water application walls.

  1. When more than incidental groundwater is known to move through the retained soils.
    1. The wall rock should be placed to the limits of the geogrid lengths up to a height equal to 12 inches (30 cm) higher than any water source.

5.2    When a wall is constructed to be a water application such as in a lake, stream or detention basin.

  1. The wall rock should be placed to the limits of the geogrid lengths up to a height equal to 12 inches (30 cm) higher than the determined high water mark. If the high water mark is unknown, the entire infill zone should be constructed with wall rock.
  2. The drain pipe should be raised to the low water elevation to aid in the evacuation of water from the reinforced mass as water level fluctuates.
  3. Embankment protection fabric should be used under the infill mass and up the back of the infill mass to a height of 12 inches (30 cm) higher than the determined high water mark.
    1. Embankment protection fabric is used to stabilize rip rap and foundation soils in water applications and to separate infill materials from the retained soils. This fabric should permit the passage of fines to preclude clogging of the material. Embankment protection fabric shall be a high strength polypropylene monofilament material designed to meet or exceed typical NTPEP specifications; stabilized against ultraviolet (UV) degradation and typically meets or exceeds the values in Table 2.
  4. For walls having moving water or wave action, natural or manufactured rip-rap in front of the wall to protect the toe of the wall from scour effects is recommended.
Mechanical Property Determination Method
Tensile Strength = 225 lbs/in (39.4 kN/m) ASTM D-4595
Puncture Strength = 950lbs (4228 N) ASTM D-6241
Apparent Opening Size (AOS)
= U.S. Sieve #70 (0.212 mm)
ASTM D-4751
Trapezoidal Tear = 100 lbs (445 N) ASTM D-4533
Percent Open Area = 4%) COE-02215
Permeability = 0.01 cm/sec ASTM D-4491

Table 2: Embankment Protection Fabric Specifications